

Digital Pressure Sensor XY-PS100A

Key parameters

- Pressure range: 200 ... 1200hPa
- Package: 8-pin LGA metal-lid
 Footprint: 2.0 × 2.5mm², height: 1.0mm
- Relative accuracy: 0.12 hPa, equiv. to ± 1.0 m (950 ... 1050hPa@25°C)
- Absolute accuracy: typ. ± 1 hPa (950 ... 1050hPa, 0...+40°C)
- Temperature coefficient offset: 1.5 Pa/K, equiv. to 12.6 cm/K (25...+40°C @ 900hPa)
- Digital interface: I²C
- Current consumption: 5.4pA @1Hz sampling rate
- Temperature range: -40...+85°C
- RoHs compliant, halogen-free

Typical applications

- Indoor navigation (floor detection, elevator detection)
- Outdoor navigation, leisure and sports applications
- Enhancement of GPS navigation
- Weather forecast
- Health care applications (e.g. spirometry)
- Vertical velocity indication (e.g. rise/sink speed)

Target devices

- Handsets such as mobile phones, tablet PCs, GPS devices
- Navigation systems
- Portable health care devices
- Home weather stations
- Flying toys
- Sport watches

Brief Description

XY-PS100A is a high precision barometer and altimeter especially designed for consumer applications. It measures the pressure based on piezo-resistive MEMS pressure sensor.

The ultra-low power, low voltage of the XY-PS100A is optimized for use in mobile phones, smart watches, PDAs, GPS navigation devices and outdoor equipment. The sensor module is housed in a compact 8-pin metal-lid LGA package with a footprint of only $2.0 \times 2.5 \text{ mm}^2$ and 1.0mm package height. Its small dimensions and its low power consumption allow the implementation in battery driven devices. With a low altitude noise of merely 0. 1m and very low offset temperature coefficient (TCO), the XY-PS100A offers superior performance and are perfectly suitable for applications like floor detection, health care as well as GPS refinement. The I²C interface allows for easy system integration with a MCU.

Index of Contents

1	Specification	3
2	Absolute maximum ratings	4
3	Operation	5
	3.1 Brief description	5
	3.2 Function description	5
	3.3 Measurement of pressure and temperature	6
	3.4 Timing of the measurements	7
	3.5 Current consumption	8
	3.6 Measurement time	8
	3.7 Software calculation flow	9
	3.8 IIR filtering algorithm	
	3.9 Noise	11
	3.10 Output compensation	11
	3.10.1 Calibration coefficients	11
	3.10.2 Compensation formula	12
4	I ₂ C interface	13
	4.1 I ₂ C read status	13
	4.2 I ₂ C read NVM	14
	4.3 I ₂ C write	14
	4.4 I ₂ C read measurement data	16
	4.5 I ₂ C slave timing	17
5	Global memory map	19
6	Pin-out and connection diagram	21
	6.1 Pin-out	21
	6.2 Connection diagram	22
7	Package, reel and environment	23
	7.1 Outline dimensions	23
8	Document history and modification	24

1 Specification

VDD = 3.3V, T=25°C, unless otherwise noted.

Table 1 Parameter specification

Parameter		Symbol	Condition	Min	Тур	Max	Units
Operating		.	operational	-40	25	+85	90
temperature ran	ige	TA	full accuracy	0		65	°C
Operating press	sure	Р	full accuracy	300		1100	hPa
Sensor supply v	oltage	VDD		1.8		3.6	V
Supply current		IDD, LP	1Hz, lowest osr_p and osr_t		5.4		pA
Peak current		Ipeak	during pressure measurement		760		рА
Current at temperature measurement		IDDT			541		pA
Sleep current		IDDSL	25°C		0.1	0.3	pA
D.1.6			700900hPa		±0.03		hPa
Relative accurac	су	Arel	2540°C		±0.25		m
Offset temperati	ure	тсо	900hPa		±0.3		Pa/K
			2540°C		±2.5		cm/K
Absolute accuracy pressure			300 1100hPa 060°C		±1.0		hPa
Resolution of oudata in O4 ultra		R ^P	Pressure		0.095		Pa
resolution mode	;	RT	Temperature		0.01		°C
			Full bandwidth, O4 ultra high		1.0		Pa
Noise in pressu	re	VP,full	resolution		8.3		cm
•			Lowest bandwidth, O4 ultra		0.2		Pa
		VP, filtered	high resolution		1.7		cm
Absolute accuracy		т	@25°C		±0.5		°C
temperature		A^{T}	0+65°C		± 1.0		°C
PSRR (DC)		PSSR	Full V _{DD} range			±0.005	Pa/mV
Long term stability		ΔPstab	12 months		±TBD		hPa
Solder drifts				-0.5		+2	hPa
Possible rate	sampling	fsample		157	182	TBD	Hz

2 Absolute maximum ratings

Table 2 Absolute maximum ratings

Parameter	Symbol	Condition	Min	Max	Units
Supply voltage	V _{DD}		-0.3	+3.6	V
Voltage at all IO Pins	V _{DDIO}	all pins	-0.3	V _{DD} +0.3	V
Overpressure	Р		0	10,000	hPa
Storage temperature	T _{STOR}		-45	+85	°C
ESD rating	ESD	HBM		±2	kV

3 Operation

3.1 Brief description

The XY-PS100A is designed to be connected directly to an external microcontroller of a mobile device via the I²C bus. The pressure and temperature data has to be compensated by the calibration data of the on-chip Non-Volatile Memory (NVM) which is individually factory calibrated for each device.

3.2 Function description

The XY-PS100A consists of a piezo-resistive micro-machined pressure sensor, an analog to digital converter and a control unit with Non-Volatile Memory (NVM) and a serial I²C interface. The XY-PS100A delivers the uncompensated values of the pressure and the temperature. The individual calibration data are stored in NVM. This is used to compensate sensitivity, offset, temperature dependence and other parameters of the sensor.

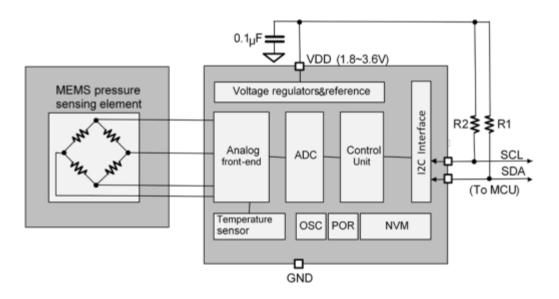


Figure 1 Block diagram of XY-PS100A

3.3 Measurement of pressure and temperature

The micro-controller sends I^2C command to start a pressure or temperature measurement. After converting time or checking status via the I^2C , the result value (raw pressure data and raw temperature data) can be read via the I^2C interface. For pressure and temperature calibration calculation in micro-controller, the calibration data in NVM has to be used. The constants can be read out from the XY-PS100A's NVM via the I^2C interface at software initialization.

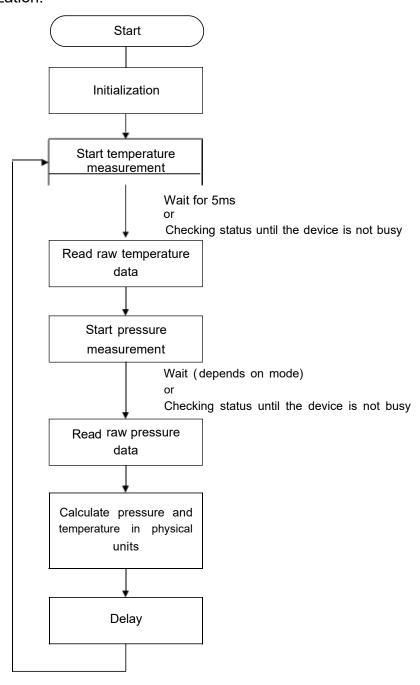


Figure 2 Measurement flow of XY-PS100A

3.4 Timing of the measurements

The output data rate (ODR) of the measurements is controlled by the external micro-controller. A single measurement is performed according to the received I²C command. When the measurement is finished, the sensor returns to sleep mode and the measurement results can be obtained via I²C interface.

The ODR can be increased to about 100 samples per second for dynamic measurement. For application with high ODR, constant t_{delay} is recommended as the self-heating of the pressure sensor and heat dissipation are in the balance if sampling rate is constant, which helps reducing the noise caused by irregular heat exchange between the sensor and the ambient environment. The recommended working timing diagram is shown in Figure 3.

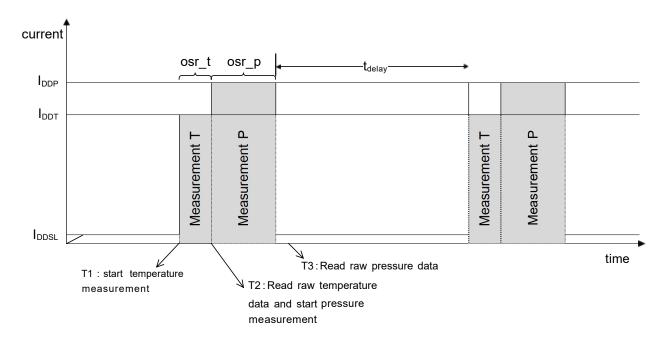


Figure 3 Recommended working timing diagram

For low power consideration, it is sufficient to measure the temperature only once per second and to use this value for all pressure measurements during the same period.

For applications which require low ODR or host-based synchronization, the t_{delay} can be set with any value larger than 0.5ms. The optimum compromise between power consumption, speed and resolution can be selected.

3.5 Current consumption

The current consumption depends on ODR and oversampling setting. The value given below are normalized to an ODR of 1 Hz. The actual current consumption at a given ODR can be calculated by multiplying the valueTable 3 with the given ODR.

Table 3 Current consumption

Oversampling setting	Pressure	Temperature	I _{DD} [pA] @ 1Hz		
Oversampling setting	oversampling	oversampling	Тур	Max	
Ultra low power	×1	×4	5.4	8.2	
Low power	×2	×4	6.4	9.7	
Standard resolution	×4	×4	9.0	13.7	
High resolution	×8	×4	14.1	21.4	
Ultra high resolution	×16	×4	24.6	37.4	
O2 Ultra high	×32	×4	45.1	60.6	
resolution [*]	*32	^4	45.1	68.6	
O4 Ultra high	v64	×4	96.4	121.2	
resolution [*]	×64	×4	86.4	131.3	

^{* &}quot;O2/4 Ultra high resolution" are not recommended for dynamic measurement with high ODR. Obvious self-heating phenomenon of the pressure sensor can be observed in these two settings. Ultra high resolution with IIR filter algorithm is recommended in this case.

3.6 Measurement time

The temperature and pressure measurement time depends on oversampling setting osr_t and osr_p. The following table shows the typical and maximum measurement time based on selected oversampling setting. The minimum achievable frequency is determined by the maximum measurement time.

Table 4 Measurement time

Oversampling setting	Measurement		Measurement		
(Single pressure or	time	[ms]	rate [Hz]		
temperature)	Тур	Max	Тур	Min	
×1	1.92	2.2	520.8	454.5	
×2	3.5	4.1	285.7	243.9	
×4	6.6	7.7	151.5	129.8	
×8	12.7	14.7	78.7	68.0	
×16	25.0	29.0	40.0	34.4	

×32	49.6	57.6	20.1	17.3
×64	98.7	114.5	10.1	8.7

3.7 Software calculation flow

When the raw temperature data and raw pressure data are obtained by the MCU, the calculation is performed in the MCU for getting compensated temperature and pressure value in physical units. The simplified software calculation flow is shown in Figure 4.

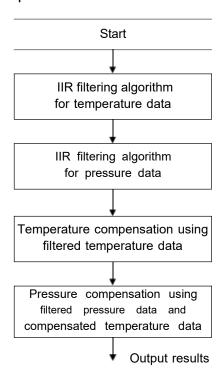


Figure 4 Software calculation flow

Note: Constant t_{delay} is preferred if IIR filtering algorithm is enabled. Please see Figure 3 for the definition of t_{delay} .

3.8 IIR filtering algorithm

For applications where a low noise level is critical, IIR filtering algorithm is strongly recommended if the lower bandwidth is acceptable. By applying IIR filtering algorithm before temperature and pressure compensation, the environmental pressure is subject to many short-term changes can be suppressed, such as slamming of a door or a window, or wind blowing into the sensor. IIR filtering algorithm effectively reduce the bandwidth of the output signals. The formula of the IIR filtering algorithm is as following:

data_ filtered =

filteT_ CoeffiCient

where data_filtered_previous is the data coming from the previous data_filtered, and raw_data_ADC is the raw temperature data or raw pressure data coming from the ADC before IIR filtering. The filter_coefficient is an integer range from 0 to 16. It controls the bandwidth of the sensor signal, please seeTable 5.

	•
Filter_ coefficient	Bandwidth (ODR is controlled by MCU)
1	Full (Filter off)
2	0.230 × ODR
4	0.092 × ODR
8	0.043 × ODR
16	0.021 × ODR

Table 5 Filtering algorithm setting

When IIR filtering algorithm is applied, it is better to keep delay time t_{delay} (see Figure 3) constant to obtain a fixed bandwidth. If temperature measurement is skipped, the corresponding raw_data_ADC will be kept unchanged. If filter_coefficient is changed during the continuously measurements, an initial operation for IIR filtering algorithm will be performed.

In order to select optimal settings, the following use cases are suggested as shown in Table 6.

Table 6 Recommended filtering setting based on use cases

Use case	Over- samplin g setting	osr_p	osr_t	IIR filter coeff.	IDD [pA]	ODR [Hz]	t _{delay} [ms]	RMS Noise [cm]
Handheld device Low-power	Ultra high resolution	×16	×4	4	246	10.0	68	5.8
Handheld device dynamic	Standard resolution	×4	×4	16	630	70	0.5~1	2.5
Weather monitoring	low power	×2	×4	1 (off)	Off	1/60	60000	34.9
Elevator	Standard resolution	×4	×4	4	65.7	7.3	123	8
Drop detection	Low power	×2	×4	1 (off)	576	90	0.5~1	34.9
Indoor navigation	Ultra high resolution	×16	×4	16	647	26.3	6.4	1.6

3.9 Noise

Both pressure and temperature noise depend on the oversampling and IIR filter coefficient settings selected.

Table 7 Noise in pressure

	Typical RMS noise in pressure [Pa]						
Oversampling setting	Off	2	4	8	16		
Ultra low power	6.0	2.9	1.7	1.0	0.7		
Low power	4.2	2.5	1.3	0.7	0.4		
Standard resolution	3.5	1.5	1.0	0.5	0.3		
High resolution	2.8	1.3	0.9	0.4	0.2		
Ultra high resolution	2.2	1.2	0.7	0.3	0.2		
O2 Ultra high	2.0	1.1	0.5	0.3	0.2		
resolution							
O4 Ultra high	TBD	TBD	TBD	0.3	0.2		
resolution							

Table 8 Noise in temperature

Typical RMS noise in temperature [C]				
Temperature oversampling	IIR filter off			
oversampling ×4	0.007			
oversampling ×8	0.006			
oversampling ×16	0.005			
oversampling ×32	0.004			

3.10 Output compensation

The XY-PS100A output consists of the ADC output values include raw temperature and pressure data. Due to different characteristic of each sensing element, the actual pressure and temperature must be calculated using a set of calibration coefficients. These coefficients are individually factory calibrated and stored in the NVM. The NVM is organized with 16-bit data type.

3.10.1 Calibration coefficients

The NVM contains 11 calibration coefficients in total. Calibration coefficients are named

co_t1~co_t3 for temperature compensation related values and co_p 1~co_p8 for pressure compensation related values. The mapping is shown inTable 9.

Addr. Bit **Calibration coefficients** Addr. Bit **Calibration coefficients** co_p8[16] co_p5[15:0] 0x03 15 80x0 15:0 co_p7[15:0] 14 reserved 0x09 15:0 co_p3[25:24] co_p6[15:0] 13:12 0x0A 15:0 co p6[25:24] co p3[15:0] 11:10 0x0B 15:0 co_p7[25:24] 0x0C co_t2[15:0] 9:8 15:0 co p5[25:24] co t1[15:0] 0x0D 7:6 15:0 co_p4[25:24] 5:4 0x0E co_t3[15:0] 15:0 co p1[25:24] co p8[15:0] 3:2 0x0F 15:0 co_p2[25:24] co_p2[23:16] 1:0 0x10 15:8 co p1[23:16] 0x04 15:6 reserved 7:0 co_p4[23:16] co_t2[17:16] 5:4 0x11 15:8 co t3[17:16] co p5[23:16] 3:2 7:0 co_t1[17:16] co_p6[23:16] 1:0 0x12 15:8 co p2[15:0] co p7[23:16] 0x05 15:0 7:0 co_p1[15:0] co p3[23:16] 0x06 15:0 15:8 0x13

Table 9 Calibration coefficients storage in NVM

3.10.2 Compensation formula

co p4[15:0]

The ODR and OSR can be selected by selected by the oversampling_setting in the C code. The IIR filter coefficient can also be set in the C code.

reserved

7:0

Using the driver C code provided by Xuyan is strongly recommended. Please contact with Xuyan for details.

$$Pressure = \frac{Pmax - Pmin}{rmax - rmin} * (\frac{rawData}{2^{24}} * 100 - rmin) + Pmin$$

0x07

15:0

Data	Value
Pmax	1200 (hPa)
Pmin	200 (hPa)
rmax	100 (%)
rmin	0 (%)

$$Temperature[\ ^{\circ}C] = \frac{TempData}{2^{16}} * 190 - 40$$

4 I²C interface

The I²C slave interface is compatible with Philips I²C specification. Standard and fast mode are supported. SDA and SCL are not pure open-drain. Both pads contain ESD protection diodes to VDD and GND. As the devices does not perform clock stretching, the SCL structure is a high-Z input without drain capability.

The 7-bit device address is 1111000 (0x78). By programming the low 7bits of the 3^{rd} data byte of NVM (address 0x02), seeTable 14, the device address can be redefined.

4.1 I²C read status

Whenever the device is addressed in read mode (RW = '1') at address 11110001, the status byte is always the first output byte. For checking the status of the device, the I²C master must send NOACK and stop condition after the status byte, as shown in Figure 5.

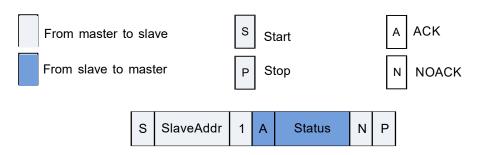


Figure 5 I²C read status

The status byte provide the information of the device. The information of each bit of the status byte is described in Table 10.

Description Meaning Status Bit7 Reserved Constant 0 "1" ADC is powered on; "0" ADC is powered off Bit6 Power indication "1" Busy: The device is measuring pressure and Busy indication Bit5 temperature and the results are not ready yet. New I²C command will not be proceeded. "0" Idle: The recent I²C command has been executed and the data to be read is ready. Reserved Constant 0 Bit4 "0" normal mode Bit3 Mode Status "1" test mode, only for testing

Table 10 Status byte

Status	Meaning	Description
Bit2	Reserved	Constant 1
Bit1	Reserved	Constant 0
Bit0	Reserved	Constant 0

4.2 I²C read NVM

The NVM has a width of 16 bits. To read the 16-bit data from the NVM, first the address of the NVM must be sent in the write mode (I^2C slave address 11110000). Then wait for at least 80ps. After this the data is ready, the slave is addressed in read mode (RW = '1') at address 11110001, after which the slave sends out status byte firstly followed with two bytes data until a NOACK and stop condition occurs, as shown in Figure 6.

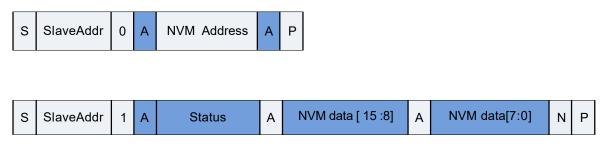


Figure 6 I²C read NVM

4.3 I²C write

The pressure or temperature measurement is triggered by sending the command in write mode, which is done by sending the slave address in write mode (RW = '0'), resulting in slave address 11110000. Then the master sends the command byte and the 16-bit command data. The transaction is ended by a stop condition, as shown in Figure 7.

Figure 7 I²C write command

The detail of the I²C command and command data is described in Table 11.

Table 11 I²C commands

CMD, Data(HEX)	Measurement	Analog Front End Configuration
0xA0, 0x0000	Pressure measurement	AFE is configured by the
		pre-programmed setting in the NVM
		(address 0x14).
0xA1, 0xssss	Pressure measurement	AFE is configured by 0 xssss, see data
		content and format in the
		NVM(address0x14)
0xA2, 0x0000	Pressure measurement	AFE is configured by the
	with system auto-zero	pre-programmed setting in the NVM
		(address 0x14).
0xA3, 0xssss	Pressure measurement	AFE is configured by 0 xssss, see data
	with system auto-zero	content and format in the
		NVM(address0x14)
0xA4, 0x0000	Temperature	AFE is configured by the
	measurement	pre-programmed setting in the NVM
		(address 0x14).
0xA5, 0xssss	Temperature	AFE is configured by 0 xssss, see data
	measurement	content and format in the
		NVM(address0x14)
0xA6, 0x0000	temperature	AFE is configured by the
	measurement	pre-programmed setting in the NVM
	with system auto-zero	(address 0x14).
0xA7, 0xssss	temperature	AFE is configured by 0xssss, see data
	measurement	content and format in the
	with system auto-zero	NVM(address0x14)

The format and purpose of configuration bits "0xssss" is the same with the definitions of the 16-bit data byte in the NVM with the address 0x14. System auto-zero mentioned inTable 11 is used for measuring the inherent system offset for the respective configuration which is only used in the software initialization process. The detail of the format is shown in Table 12.

Table 12 AFE setting format

	Analog front end configuration format (ssss)					
Bit	Description	Definition				
15:14	osr_t	Oversampling setting of temperature measurement				
		00 : ×4 10 : ×16				
		01 : ×8	11 : ×32			
13:11	osr_p	Oversampling setting of pressure measurement				

	Analog front end configuration format (ssss)				
		111 : x0	011 : ×8		
		110 : ×1	010 : ×16		
		101 : ×2	001 : ×32		
		100 : ×4	000 : ×64		
10:8	A2D_Offset	ADC offset and resul	ting A2D input range		
		000 : 1/16 -> [-1/16	6, 15/16] (Default value)		
		001 : 2/16 -> [-2/16	· •		
		010 : 3/16 -> [-3/16	, 13/16]		
		011 : 4/16 -> [-4/16	, 12/16]		
		100 : 5/16 -> [-5/16	•		
		101 : 6/16 -> [-6/16	, 10/16]		
		110 : 7/16 -> [-7/16,	, 9/16]		
		111 : 8/16 -> [-8/16	, 8/16]		
		Use the default value	e is recommended.		
7:6	Clk_divider	ADC sampling clock	frequency setting		
		Use "00" is recomme	ended.		
5	Gain_polarity	Polarity of pre- ampli	fier for measuring pressure		
		0 : negative	1 : positive		
4:2	Gain_stage2	Gain setting for the 2	nd pre- amplifier stage		
		000 : 1.1x	100 : 1.5x		
		001 : 1.2x	101 : 1.6x		
		010 : 1.3x	110 : 1.7x		
		011 : 1.4x	111 : 1.8x		
1:0	Gain_stage1	Gain setting for the 1 st pre-amplifier stage			
		00 : 12x	10 : 30x		
		01 : 20x	11 : 40x		

4.4 I²C read measurement data

After the pressure or temperature measurement is triggered by sending relative I^2C commands described in 4.3, XY-PS100A starts a measurement and puts the result in the output buffer. Depend on the OSR setting, the measurement will complete in several milliseconds, as shown in Table 4. Then the I^2C master can read the pressure or temperature raw data. User can also regularly read the status via I^2C to check the device is

in busy or idle. The measurement is ready for reading if the status is idle.

Pressure measurement data is always read in 24-bit format, as shown in Figure 8.

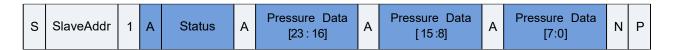


Figure 8 I²C read pressure data

Temperature measurement data can be read in 16-bit or 24-bit format depends on the resolution requirement of the application. For pressure compensation calculation, high 16-bit temperature data is enough.

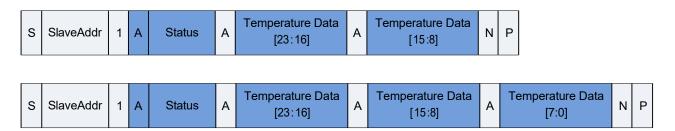


Figure 9 I²C read temperature data

4.5 I²C slave timing

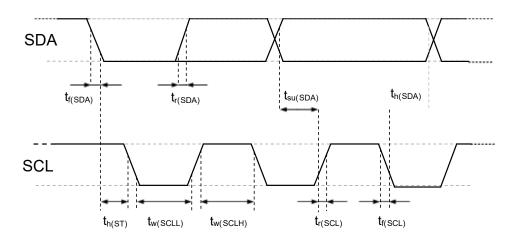


Figure 10 I²C timing diagram

Table 13 I²C timing

Symbol	Parameter	l ² C standard mode		I ² C fast mode		Unit
		Min	Max	Min	Max	
f _(SCL)	SCL clock frequency	0	100	0	400	kHz

t _{w(SCLL)}	SCL clock low time	4.7		1.3		ps
t _{w(SCLH)}	SCL clock high time	4.0		0.6		ps
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0.09	3.45	0.02	0.9	ps

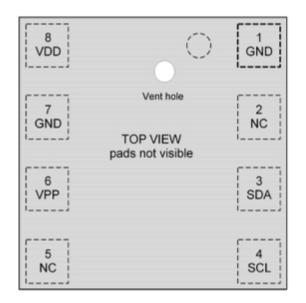
Notes: Measurement points are done at 0.2 V_{DD} and 0.8 V_{DD} , for both ports.

5 Global memory map

The Non-volatile memory has a width of 16 bits. There are several memory which are reserved; they should not be written to, otherwise the CRC bit in the status would not be correct. The detail of the memory is given inTable 14.

Table 14 Memory map

NVM	Bit	Default	Description	Notes/Explanations	
Addr	Range	Value			
(HEX)					
0x00	15:0	0x0000	cust_ID0	Custom ID byte 0	
0x01	15:0	0x0000	cust_ID1	Custom ID byte 1	
0x02	15:7	0x000	-	Reserved	
	6:0	0x00	slave_Addr	I ² C slave address; valid 0x01~0x7F. If slave_addr=0x00, then 0x78 is used. Note: address codes 0x04 to 0x07 are reserved for entering I ² C High Speed Mode.	
0x03	15	Individual	co_p8[16]	Bit [16] of calibration coefficient co_p8	
	14	0x0	reserved	reserved	
	13:12	Individual	co_p3[25:24]	Bits [25:24] of calibration coefficient co_p3	
	11:10	Individual	co_p6[25:24]	Bits [25:24] of calibration coefficient co_p6	
	9:8	Individual	co_p7[25:24]	Bits [25:24] of calibration coefficient co_p7	
	7:6	Individual	co_p5[25:24]	Bits [25:24] of calibration coefficient co_p5	
	5:4	Individual	co_p4[25:24]	Bits [25:24] of calibration coefficient co_p4	
	3:2	Individual	co_p1[25:24]	Bits [25:24] of calibration coefficient co_p1	
	1:0	Individual	co_p2[25:24]	Bits [25:24] of calibration coefficient co_p2	
0x04	15:6	0x000	reserved	reserved	
	5:4	Individual	co_t2[17:16]	Bits [17:16] of calibration coefficient co_t2	
	3:2	Individual	co_t3[17:16]	Bits [17:16] of calibration coefficient co_t3	
	1:0	Individual	co_t1[17:16]	Bits [17:16] of calibration coefficient co_t1	
0x05	15:0	Individual	co_p2[15:0]	Bits [15:0] of calibration coefficient co_p2	
0x06	15:0	Individual	co_p1[15:0]	Bits [15:0] of calibration coefficient co_p1	
0x07	15:0	Individual	co_p4[15:0]	Bits [15:0] of calibration coefficient co_p4	
0x08	15:0	Individual	co_p5[15:0]	Bits [15:0] of calibration coefficient co_p5	
0x09	15:0	Individual	co_p7[15:0]	Bits [15:0] of calibration coefficient co_p7	
0x0A	15:0	Individual	co_p6[15:0]	Bits [15:0] of calibration coefficient co_p6	
0x0B	15:0	Individual	co_p3[15:0]	Bits [15:0] of calibration coefficient co_p3	
0x0C	15:0	Individual	co_t2[15:0]	Bits [15:0] of calibration coefficient co_t2	
0x0D	15:0	Individual	co_t1[15:0]	Bits [15:0] of calibration coefficient co_t1	
0x0E	15:0	Individual	co_t3[15:0]	Bits [15:0] of calibration coefficient co_t3	
0x0F	15:0	Individual	co_p8[15:0]	Bits [15:0] of calibration coefficient co_p8	



NVM	Bit	Default	Description	Notes/Explanations
Addr	Range	Value		
(HEX)				
0x10	15:8	Individual	co_p2[23:16]	Bits [23:16] of calibration coefficient co_p2
	7:0	Individual	co_p1[23:16]	Bits [23:16] of calibration coefficient co_p1
0x11	15:8	Individual	co_p4[23:16]	Bits [23:16] of calibration coefficient co_p4
	7:0	Individual	co_p5[23:16]	Bits [23:16] of calibration coefficient co_p5
0x12	15:8	Individual	co_p6[23:16]	Bits [23:16] of calibration coefficient co_p6
	7:0	Individual	co_p7[23:16]	Bits [23:16] of calibration coefficient co_p7
0x13	15:8	Individual	co_p3[23:16]	Bits [23:16] of calibration coefficient co_p3
	7:0	0x00	reserved	reserved
0x14	15:14	0x00	osr_t	Default oversampling setting of temperature measurement
	13:11	0x00	osr_p	Default oversampling setting of pressure measurement
	10:8	0x0	A2D_Offset	ADC offset and resulting A2D input range
	7:6	0x0	Clk_divider	ADC sampling clock frequency setting
	5	0x1	Gain_polarity	Polarity of pre-amplifier for measuring pressure
	4:2	Individual	Gain_stage2	Gain setting for the 2nd pre-amplifier stage
	1:0	Individual	Gain_stage1	Gain setting for the 1st pre-amplifier stage
0x15~	15:13	0x0000	Reversed	Reserved
0x1E				
0x1F	15:0	Individual	ChecksumC	Integrity checksum (CRC)

6 Pin-out and connection diagram

6.1 Pin-out

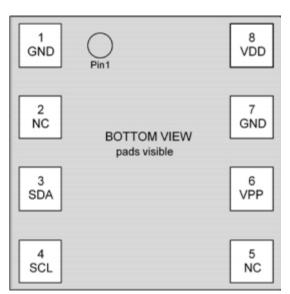


Figure 11 Pin-out top and bottom view

Table 15 Pin description

Pin	Name	I/O Type	Description	Connect to
1	GND	Supply	Ground	GND
2	NC		Not Connected	Not connected
3	SDA	In/Out	Serial data input and output	I ² C SDA
4	SCL	ln	Serial clock input	I ² C SCL
5	NC		Not Connected	Not connected
6	VPP	Supply	NVM programming supply	Not connected
7	GND	Supply	Ground	GND
8	VDD	Supply	Power supply	VDD

6.2 Connection diagram

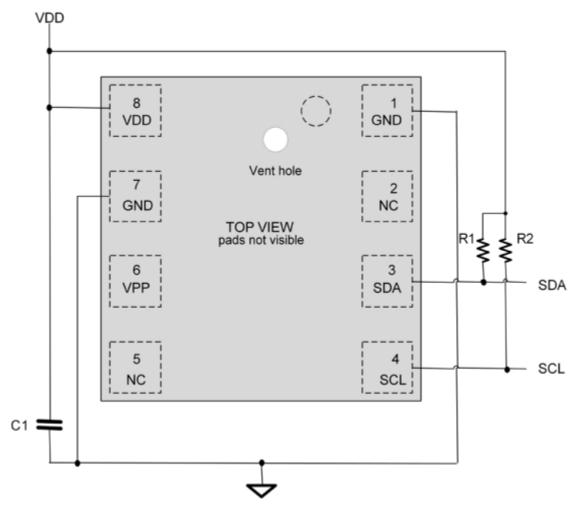


Figure 12 Connection diagram

Notes:

- The recommended value for C1 is 100nF
- The value for the pull-up resistors R1, R2 should be based on the interface timing and the bus load; the typical value is 4.7 kQ for both resistors.

7 Package, reel and environment

7.1 Outline dimensions

The sensor housing is an 8-pin metal-lid LGA $2.0 \times 2.5 \times 0.95 \text{ mm}^3$ package. Its dimensions are depicted in Figure 13.

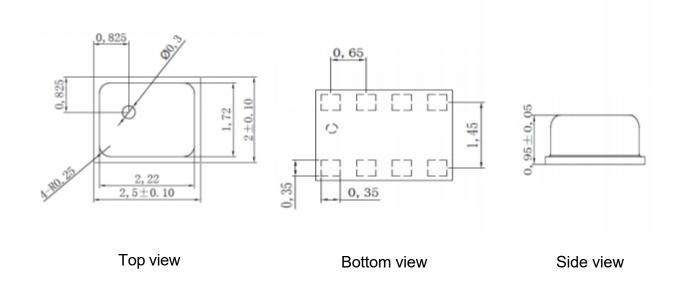


Figure 13 Package outline dimensions for top, bottom and side view

8 Document history and modification

Version	Description	Date
1.0	Initial release	Jul. 20, 2015
2.0	Correct VDD&VPP definition, modify value of pull up resisters	Mar. 22, 2024